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The errors which have resulted from the constant static
pressure assumption in the past are one very probable reason
for the past inability to achieve any kind of satisfactory cor-
relation between flight test data and wind tunnel data and have
undoubtedly slowed progress in obtaining a satisfactory theory
for predicting the wake turbulence hazard.
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Reply by Author to J. F. Marchman

ANDREW H. LOoGAN*
United Aircraft Corporation, Stratford, Conn.

Nomenclature

Cpp = pressure coefficient of a side port
P = pressure at a side port
Pg = static pressure
V = resultant velocity
p = density

ARCHMAN is incorrect in his statement that I assumed

that the static pressure is constant through the vortex.
My data were reduced in the following manner. The static
pressure probe was calibrated by first considering the pres-
sure coefficient at one of the side ports while the probe was
in a uniform stream which is what the probe sees when aligned
with the resultant velocity inside the vortex. We can express
the pressure coefficient at a side port as

Crp = (P— P)[3pV?

The pressure difference between the stagnation point and
the side port can also be expressed as

Ps+ tpV2—P=AP
Combining these two expressions results in
3pV?(1 — Cpp) = AP
V=QAP/[p(1 — Cep)]D*'?
where Cp, will be constant for the probe and position of the
ports. As the procedure shows there was no assumption that
the static pressure was constant.
The second value needed for the derivation of the axial and

tangential velocities is the angularity of the resultant flow.
The angularity was determined by independently measuring
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the inclination of the pressure probe once it was aligned with
the resultant velocity inside the vortex. The inclination of the
probe and the magnitude of the resultant velocity were then
used to derive the axial and tangential velocities. A complete
description of the probe and the experimental method can be
found in Ref. 1.
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Comments on ‘““Convergence Proof of
Discrete-Panel Wing Loading
Theories”

R. M. JaMEs*
Douglas Aircraft Company, Long Beach, Calif.

HE Note' by J. DeYoung is unusual in that no reference

to any of the vast number of published papers by workers
other than himself in the very active field of thin-wing loading
appears. In general, this can hardly be regarded as in the best
interests of scientific method; but in this case it happens to be
particularly important because even a brief acquaintance with
the current literature would have shown the author that the
inversion of the loading matrix—whose elements are given (in
the notation of Ref., 1) by: 1/(2m — 2n + 1) is only a trivial
part of the problem since the result is known.

In fact, it is quoted as an example problem in a textbook by
Isaacson and Keller.?

Furthermore, through communication from W. P. Jones the
writer subsequently found that this result dates (at least) back
to the work of A. R. Collar® # in 1950. That the essential
result for the inversion was known was reported in Ref. 5 and
has subsequently been widely circulated and quoted (e.g.,
Refs. 6-8).
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